
CPS311 Lecture: Representing Information in Binary       Last revised 8/22/13

Objectives:

1. To review binary representation for unsigned integers
2. To introduce octal and hexadecimal shorthands
3. To review binary representation for characters
4. To introduce binary representations for signed integers
5. To introduce the IEEE 754 representation floating point representation
6. To discuss the basic process of doing floating point arithmetic
7. To review/introduce binary representations for sounds, graphics, movies

Materials:

1. Dr. Java
2. RGB Demo Applet

I.Introduction

A. One of the key suggestions in Von Neumann's landmark paper was that computer 
systems should be based on the binary system, using just the two bit values 0 and 
1 to encode information.

1. This is consistent with the nature of the physical devices used to construct 
computer systems, and has contributed to the high reliability we associate 
with digital systems.

2. Although Von Neumann was thinking just in terms of representing 
integers in binary, we have since learned to represent many other kinds of 
information this way, including text, sounds, and graphics.

3. To this day - over 6 decades later, and through several changes in 
fundamental technology  - this idea still dominates the field of  computing.

B. At the outset, we should note that there is a crucial distinction between a 
NUMBER (an abstraction) and a REPRESENTATION of a number (a  symbol). 
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1. For example, the number we call four can be represented by the  following 
symbols:

FOUR    QUATUOR         4       IV      ||||    113      1002    etc.

2. On the other hand, the symbol 100 could represent 4 (as above) or one 
hundred (decimal system) or 9 (trinary system) or for any one of an 
infinite variety of possible values.

C. Most often, we represent numbers by a symbol based on a positional notation 
system.  The development of positional notation was a crucial  advance in the 
development of modern mathematics.  In a positional system, we have a base or 
radix (such as 2 for binary, 3 for trinary, or ten for decimal).  We make use of a 
limited set of symbols for representing values 0 .. radix - 1.

1. For example, in binary, we use two symbols (0,1); in octal (base 8)  we use 
8 (0,1,2,3,4,5,6,7); in hexadecimal (base 16) we use 16 symbols  
(0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F) etc. 

2. When there is any possibility of confusion, we denote the radix of a 
numerical symbol by a subscript (written using decimal notation!) -  eg: 
901016

D. Further, in a positional system the value of a symbol depends on where it is 
written.  The rightmost symbol (digit) has the value (symbol_value)*1; the one 
next to it has value (symbol_value) * radix etc.  Thus, the  radix-2 (binary) 
number 01000001 is equivalent to the decimal number:

0*128 + 1*64 + 0*32 + 0*16 + 0*8 + 0*4 + 0*2 + 1*1 = 6510  

E. In this and subsequent lectures, we will consider how various kinds of 
information can be represented in binary.  First, we limit ourselves to unsigned 
integers.

2



II. Review of Internal Encoding for Unsigned Binary Integers

A. The normal way of encoding unsigned binary integers is to use a straightforward 
place-value system, in which the bits are assigned weights 20, 21, 22 etc.  Thus, 
for example, the binary integer 1011 would be interpreted as

1 * 20 = 	
  	
 1
+ 1 * 21 = 	
 2
+ 0 * 22 = 	
 0
+ 1 * 23 = 	
 8
	
 	
  	
 ---
	
 	
  	
 11

B. Note that with n bits we can store values in the range 0 .. (2n) - 1

C. Conversion between decimal and binary

1. To go from binary to decimal, we use the basic approach outlined above: 
multiply the rightmost bit by 20, the next bit by 21, the next bit by 22 etc.  
Add the products.  (It helps if you memorize the powers of 2)

Example: convert 10011101 to decimal           (157)

Exercise: 10101010                             (170)

2. To go from decimal to binary, we can use successive division: Divide the 
decimal number by 2.  The remainder is the rightmost bit of the binary 
equivalent.  Divide the quotient by 2.  The new remainder  is the second 
rightmost bit.  Divide the new quotient by 2.  The new remainder is third 
rightmost bit ... Continue until the quotient is 0.

Example: convert 238 to binary
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238 / 2 = 119 rem 0     <- least significant bit
119 / 2 =  59 rem 1
59 / 2 =  29 rem 1
29 / 2 =  14 rem 1
14 / 2 =   7 rem 0
7 / 2 =   3 rem 1
3 / 2 =   1 rem 1
1 / 2 =   0 rem 1     <- most significant     238 => 11101110

Exercise: 252                                  (11111100)

D. Adding binary numbers: As a child, you learned how to do addition based on an 
addition table like the following:

	
 	
 0	
 1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	
 9
0	
 	
 0	
 1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	
 9
1	
 	
 1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	
 9	
 0 + carry
2	
 	
 2	
 3	
 4	
 5	
 6	
 7	
 8	
 9	
 0+ca	
 1 + carry
3	
 	
 3	
 4	
 5	
 6	
 7	
 8	
 9	
 0+ca	
 1+ca	
 2 + carry

etc.

For binary, the table is much simpler:

 	
 0        1
0	
 0	
 1
1	
 1	
 0+carry

Example:	
    01011010 	
Check:	
     	
      90
	
 	
 + 01101100                       	
 + 108	

	
 	
    11000110	
 	
 	
 	
    198

Exercise: 	
   00111001
	
 	
 + 01011010
	
 	
    10010011

E. One issue to be sensitive to in addition and other operations is OVERFLOW.  
Computer hardware typically uses a fixed number of bits to represent integers, so 
an erroneous result will be produced if the correct sum is too big for the 
representation.
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Example: assume a certain machine uses 8 bits for integers.  Consider the 
following problem:

	
 	
 	
    11001000	
 	
 	
 	
    200
	
 	
 	
 + 11001000	
 	
 	
 	
 + 200
	
 	
 	
    10010000	
 	
 	
 	
    144 !!

The error arises because 8 bits cannot represent the correct sum.  (Here, we 
detect overflow by the fact that there was carry out of the most significant bit 
position.)

F. Other arithmetic operations can be done on binary numbers in a manner 
analogous to the decimal operations, but using the binary tables - though other 
methods are actually used in practice, as we shall see.

III.Octal and Hexadecimal Shorthands

A. By now you are probably tired of writing 1's and 0's all the time. Writing 
numbers in binary is tiring, and it is very easy to make mistakes.  On the other 
hand, converting numbers between decimal and binary is complex, so at the 
hardware level we like to work with the binary form.

B. Consider, for a moment, the radix-8 (octal) number system.  Since there are 8 
different symbols in this system, octal numbers are about as easy  to write as 
decimal numbers.  Further, because 8 is a power of 2, it is  very easy to convert 
between binary and octal notations.

1. Binary to octal: group binary number into groups of three bits,  starting 
from the right.  Each group will now represent a value in  the range 0 .. 7 - 
i.e. an octal digit.

Example:       11 000 111	
 	
 --> 3078
Exercise:      10 101 100	
 	
 (254)

2. Octal to binary: convert each digit to three bits:

Example: 	
146 --> 001 100 110
Exercise:	
 321     (011 010 001)
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3. In a sense, then octal becomes a form of shorthand for binary.  Any given 
bit can be quickly recovered from the octal representation.

Example:       What is bit 4 of the number represented by 246 ?

Observe: octal digit 0 is bits 0..2; digit 1 is bits 3..5.  So bit 4 is the middle 
bit of middle digit - i.e. middle bit of 4 - i.e. middle bit of 100 - i.e. 0 

Exercise: Bit 5 of 172?        (1)

C. Another system often used as a shorthand for binary is hexadecimal - base 16.  
The hex digits are written 0 .. 9, A, B, C, D, E, F

Example:        A13E --> 1010 0001 0011 1110

Exercise:       4FB7     (0100 1111 1011 0111)

Exercise:       1100 0101 1111 0100     (C5F4)

D. Historically, the instruction set architecture of the DEC PDP-11 (the system on 
which C was developed) was such that using the octal shorthand was the more 
natural notation.  (Octal digit boundaries fell at field  boundaries within the 
instruction.)

1. As a result, octal notation found its way into the C programming language 
and its descendants.  (A numeric constant written with a leading 0 is 
interpreted as octal - e.g. 010 is 8!)  

2. However, for most modern architectures (including MIPS) the 
documentation convention is to use hexadecimal, rather than octal, as a 
shorthand for binary. Therefore, hexadecimal is the main shorthand we 
will use in this course.

E. Always remember, though, that octal and hexadecimal are simply shorthands for 
making the writing and reading of binary numbers  easier.  The internal 
representation is always binary.
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IV.Representations for Signed Integers

A. The method we have developed thus far for representing integers in binary only 
allows us to represent integers >= 0.  Obviously, we also need a way to represent 
negative numbers.

B. In decimal, we represent negative numbers by representing their absolute  value 
and preceding it by a negative sign.  This, in effect, means that we have added 
one more symbol to our set of numerical symbols (a 10% increase in the size of 
our set of symbols).  On a computer using binary internally, this is   highly 
undesirable, since we would then have to have three different symbols to 
represent numbers with, instead of two (a 50% increase in the  size of our set of 
symbols.)

C. Instead, we take advantage of the fact that the number of bits in  a binary number 
is fixed by the hardware design (the machine's word length). 

1. If we wish to represent signed numbers, then, we can reserve the leftmost 
bit as a sign bit, and interpret it as follows:

0 --> the number is >= 0        1 --> the number is negative

2. A consequence of reserving one bit for the sign is that the largest positive 
number we can represent is about half as big as what we could have 
represented with the same number of bits using unsigned notation (we've 
given up one bit for the sign.)  (This is why some languages (e.g. C++) 
allow integers to explicitly be declared as unsigned - to allow all bits to be 
used for representing magnitude.)

3. An important ramification of a choice like this is that we have to be careful 
about OVERFLOW.

a) We have already seen that, with a fixed number of bits allocated for 
representing an integer, an addition can produce a result that is too 
big to be represented in the specified number of bits.  
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b) But now, this problem can manifest itself without any carry, but 
instead as a result of the wrong sign.

Example: represent 100 (decimal) as an 8 bit signed binary  number:

01100100   (rightmost bit is sign - 0)

Now take the sum 100 + 100 = 200.  This results in overflow, 
because we only have seven bits available for representing the 
magnitude of the number (since one bit is reserved for the sign)

In  fact, the result from performing addition in the usual way is 
11001000 which looks like -56, since the rightmost bit is 1 !

D. With this basic encoding (using the leftmost bit for the sign), there are actually 
three possible schemes for representing signed numbers. All agree on using the 
leftmost bit in the number to encode the sign - with 0 encoding + and 1 encoding 
- but they differ in what they do with the remaining bits.

1. Sign magnitude

2. One's complement

3. Two's complement

We will only discuss the first and last schemes, since one's complement is 
rarely used.

E. For the following examples, we will assume the use of 8 bits to represent an 
integer - 1 for the sign and 7 for the value.   This is just so we don't have to write 
lots of 0's or 1's on the board - most typically we use 32 bits (or even 64 bits) to 
represent an integer.
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V. Sign-Magnitude Representation

A. The simplest way to represent signed numbers is called sign-magnitude. It is 
based on the method we use with decimal numbers:

1. To represent a positive number in (say) 8 bits, represent its magnitude as 
seven bits and prefix a 0.

2. To represent a negative number in (say) 8 bits, represent its magnitude as 
seven bits and prefix a 1.

Example:	
 +65	
 --> 1000001 (7 bits) --> 01000001
	
 	
 -65	
 -> 1000001 (7 bits) --> 11000001

Exercise:      + 72, -72       (01001000, 11001000)

3. To change the sign of a number, invert the sign bit.

B. Some Ramifications of the Sign-Magnitude Representation

1. There are two representations for zero: 00000000, 10000000

(The latter can be used as an "undefined value" to be stored in  
uninitialized variables.  If the hardware ever reads it from memory, a trap 
can be generated to indicate that the programmer has used an undefined 
variable.)

2. Range of values representable with n bits: -(2(n-1) - 1) .. 2(n-1)  - 1

3. Unfortunately, while simple for us, sign-magnitude is awkward in 
hardware.  For example, the algorithm to add two sign magnitude numbers 
looks like this: 

 If signs agree: add magnitudes, retaining signs.  Overflow occurs if the 
sum magnitude exceeds 2(n-1) - 1  - i.e. if there is carry out of the most 
significant bit of the magnitude sum.
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If signs differ: find number with greater magnitude and retain its sign.  
Form magnitude of result by subtracting smaller magnitude from larger. 
(Overflow cannot occur.)

Examples:	
   0 0000001	
   1
	
 	
 + 0 0000001	
+ 1
	
 	
    0 0000010	
   2
	
 	
    1 1000000	
-64
	
 	
 + 0 0000001            1

becomes:	
    1 1000000	
 -64
	
 	
  - 1 0000001	
- -1
	
 	
    1 0111111	
  -63

	
 	
    1 0000001	
      -1
	
 	
 + 1 1111111	
+ -127
	
 	
    1 0000000       	
 OVERFLOW - carry out of most 
	
 	
 	
 	
 	
 significant bit of magnitude sum 
	
 	
 	
 	
 	
 (Result looks like zero!)

Exercise:	
    00100000
	
 	
 + 10000010
	
 	
    (00011110)

4. Actually, multiplication and division are more straightforward: multiply/
divide magnitudes and set sign = xor of original signs.

C. Sign-magnitude is rarely used for integers, but is used as part of the 
representation for reals as we shall see later.
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VI.Two's Complement Representation

A. The most commonly used scheme for representing signed numbers is called 
two's complement.  

1. The basic idea is this: when we write a positive number, we are really 
writing an abbreviation for the representation, in the sense that the number 
could be thought of as having infinitely many 0's to the left - 

e.g. The representation for 42 (using 8 bits) is 00101010 - but we could 
think of this as standing for

... 00000000000000000101010
infinitely many 0's 

2. To form the representation for a negative number, think of what would  
happen if we subtracted its absolute value from 0 (-X = 0 - X).  E.g. if we 
subtracted the representation for 42 from 0, we would get

  ... 00000000000000000000000
- ... 00000000000000000101010
 ... 11111111111111111010110
infinitely many 1's 

a) If we abbreviate down to 8 bits, we get 11010110

b) Actually, we don't have to work with infinitely many bits - to negate 
an n bit number, it suffices to subtract it from the (n+1)-bit number 
2n and then truncate to n bits - e.g.

100000000      Representation for 28
- 00101010      42
011010110 = 11010110 in 8 bits
^---- Discard this bit

3. This is called the TWO'S-COMPLEMENT representation - i.e. we say that 
11010110 is the two's complement of 00101010.
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a) If we apply this process again to 11010110, we end up with 
00101010 again - which is what we would expect, given that 0-(0-
X)=X necessarily holds.)  That is, we can say that 11010110 is the 
two’s complement of 00101010 and vice versa.

b) Observe that if we add the n-bit representation of a number and its 
two's complement, without treating the sign bit specially, the result 
is 2n.  However, if we truncate the result to n bits, it becomes  0 - 
which is surely  what we want since X + (-X) = 0

  00101010
+11010110
100000000 = 00000000 in 8 bits

B. An Easy Way to Represent Numbers in Two's complement

1. To represent a positive number in n bits, represent it as an unsigned 
number using n-1 bits and prefix a 0.  (If this cannot be done, then the 
number is too big to be represented as an n-bit two's complement number.)

Example: Represent +65 as an 8-bit two’s complement number.
Since it is positive, represent it as a 7 bit number: 1000001 and prefix a 0: 
01000001

2. To represent a negative number in n bits, represent its absolute value (a 
positive number) in n bits as above, then invert all the bits (including the 
sign bit) and add 1. 

Example: Represent -65 as an 8-bit two’s complement number.
Since it is negative, represent its absolute value in 8 bits as above: 
01000001.

Flip all the bits:	
   10111110
Add one:	
 	
 +00000001
	
 	
 	
   10111111

Exercise:      + 72, -72       (01001000, 10111000)
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3. To change the sign of a number, simply flip all the bits, then add 1.

Example: Negate -65

Flip all the bits:	
   01000000
Add one:	
 	
 +00000001
	
 	
 	
   01000001 	
 (+65, as expected)

4. Observe: if we are using n bits, then X, if negative, looks like the unsigned 
number

2n + X

Example: the representation for -65: 10111111 looks like 191 if viewed as 
an unsigned number, which is 28 (256) + -65!

5. This last observation raises an important point: to interpret a pattern of 
bits, we need to know what representation is being used.  

That is, if you were to see the bit pattern 10111111:

- if you thought it was using the unsigned number representation, you 
would interpret it as 191
- if you thought it was using the two’s complement representation, you 
would interpret is as -65
- if you though it was using the sign-magnitude representation, what 
would you interpret is as?

ASK

-63!

C. Some Ramifications of the Two’s-Complement Representation

1. There is one representation for 0: all bits zero (e.g. 00000000 using 8 bits)
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To see this, consider what happens if we try to form -0 by flipping all the 
bits of 0 and adding 1.

Flip all the bits:	
 ...11111111 
Add one:	
 	
 +00000001
	
 	
 	
 ...00000000

2. Range of values representable with n bits:  -2(n-1)   .. 2(n-1)   - 1 

Note that this is assymetric: there is one more negative value than positive 
value.  For example, using 8 bits -128 is representable as 10000000, 
though +128 is not representable.  

Hence, trying to negate the most negative possible number produces 
overflow)

Example: The most negative possible number in 8 bits is -128

Flip all the bits:	
   01111111
Add one:	
 	
 +00000001
	
 	
 	
   10000000

So, in 8 bits, -(-128) = -128 - which is overflow.

3. To add two 2's complement numbers: add them as if they were  unsigned  
(ie treat the sign as if it were the most-significant bit of an unsigned 
number.) Discard (and ignore) any carry out of the sign position.

a) To see why this works (in the absence of overflow), observe the 
following:

(1) If we add two non-negative numbers X and Y, the operation is 
the same as unsigned addition in any case. 

(2) If we add two negative numbers X and Y, X looks like 
the unsigned number X + 2n and Y looks like the 
unsigned number Y + 2n.  The sum therefore looks like 
X + Y +2n + 2n.
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However, since there is (of necessity) a carry out of the 
most significant position, one of the 2n's is cancelled 
and the sum looks like X + Y + 2n, which is correct 
since the sum of two negative numbers is itself a 
negative number.

(3) If we add negative number (X) to a non-negative number (Y), 
X looks like the unsigned number X + 2n and the sum looks 
like  the unsigned number X + Y + 2n.

(a) If the final sum is negative, this is the correct two’s 
complement representation. 

(b) If the final sum is positive, there is (of necessity) a 
carry out of the most significant position which cancels 
the 2n term, so the result looks like X + Y as desired.

b) The above analysis assumed no overflow.  There is overflow if carry 
out of sign position (leftmost bit) != carry in to sign position 
(leftmost bit)

Examples:	
   01100100              10010
	
 	
 +01100100              10010
	
 	
   11001000	
 	
   -5610

Carry out of sign position = 0; carry into sign position = 1 - 
OVERFLOW

	
 	
   00001000                8
	
 	
 +11111111               -1
	
 	
   00000111                7

Carry out of sign position = carry into sign position = 1 - no 
overflow

As the above examples illustrate, it is possible to have
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- No carry out of sign position, but overflow nonetheless
- Carry out of sign position without overflow

(Of course, it is also possible to have neither carry out of the sign 
position nor overflow, or to have both.  All four combinations of 
carry out of the sign and overflow are possible - they are distinct 
concepts!)

Exercise: 	
  11000001	
 	
 -63
	
 	
 +01000000 	
 	
 64
	
 	
   00000001	
 	
 1

c) Proof of overflow rule:

Carry in to sign != carry out of sign  <=> overflow

(1) If we add two positive numbers, there will never be carry out 
of the sign (since both signs are zero).  The sign of the result 
will be 1 (which must be an overflow) iff there is carry in to 
the sign - that is, there is overflow iff the two carries differ.

(2) If we add two negative numbers, there will always be carry 
out of the sign (since both signs are one).  The sign of the 
result will be 0 (which must be an overflow) iff there is no 
carry in to the sign - hat is, there is overflow iff the two 
carries differ.

(3) If we add two numbers of unlike sign, there can never be 
overflow (since the result must lie somewhere between these 
two values, so since they are representable the result must be 
as well).  Further, there will be carry out of the sign iff there 
is carry in to the sign (since just one sign is one) -  i.e. the two 
carries will always be the same.

4. To subtract: Negate (flip all the bits, add 1) the subtrahend and add
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5. Multiplication and division are more complex.  One approach is to 
complement negative values so as to do the whole operation with positive 
values, then if the two original operands were of opposite sign then 
complement the result.  Or, the whole operation can be done in 2's 
complement - we'll discuss this later.

D. Two's complement is the preferred scheme for integer arithmetic on  most 
machines, though many (including MIPS) use Sign-Magnitude for   floating  
point. (Note that, since the arithmetic algorithms are wired into the hardware, the 
choice is made by the hardware designer  and cannot easily be altered in 
software.)

VII.Internal encoding for reals (floating point numbers)

A. Thus far we have confined our discussion to integers.  How can we represent 
real numbers?  It turns out that this is an area where  architectures diverge 
widely.  We will discuss general principles, and then a particular approach that 
has become widely accepted.

B. A real number is stored internally as a mantissa times a power of some  radix - 
i.e.

m * re

This is familiar to us - “scientific notation” uses r = 10 - example:

6.02 * 1023

1. CPU architects have several basic options regarding the format of the 
mantissa, m:

a) It may be a pure fraction.  That is, there is an assumed binary  
point just to the LEFT of the first bit of the mantissa.

b) It may be a number between 1 and 2, with an assumed binary point 
between the first and second bits. (This is analogous to the 
convention in scientific notation, which uses a mantissa between 1 
and 10)
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c) It may be an integer, with an assumed binary point just to the 
RIGHT of its last bit.

2. The exponent e specifies a power of some radix, r, by which the mantissa 
is to be multiplied.

a) The radix is often 2, but in some machines is 4, 8, or 16

Example: If a machine uses 2 as the radix of its exponent, then a  
number with binary mantissa 1.1 and exponent 2 is interpreted as

1.12 * 22  = 6

However, if the exponent radix is 16 (as on the IBM mainframe 
architecture, then the interpretation is

1.12 * 162  = 38410

b) Of course, the choice of what radix to use for the exponent is an 
architectural choice, involving tradeoffs between RANGE and 
PRECISION.  Using a larger radix means a larger range of values 
can be represented, at the cost of some precision.

C. In an attempt to deal with data exchange problems arising from a  diversity of 
floating point representations used by different  manufacturers, the IEEE has 
developed a floating point standard (Standard  754) that is used by most systems

1. Older architectures developed prior to this standard may use a different 
format (in fact, the proliferation of such formats was what led to the 
development of IEEE 754). 

a) One important architectures that is still in use that utilize a pre-
IEEE 754 floating point format is the IBM mainframe  
architecture.

b) All current microprocessor architectures in wide use utilize the  
IEEE 754 format, including MIPS, IA32, and PowerPC

c) The Java Virtual Machine utilizes the IEEE 754 format.
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2. The standard provides two different formats for single and double  
precision numbers.  We will consider the single precision  representation 
in this system in some detail.

s exponent fraction

3031 23 22 0

a) s = sign of mantissa: 0 = +, 1 = -

b) exponent = exponent as power of 2, stored as an 8-bit unsigned 
number in excess 127 form - i.e.  value in this field stored is 127 + 
true value of exponent.

Examples:	
 true exponent = 0; stored exponent = 127
	
 	
 true exponent = 127; stored exponent = 254 
	
 	
 true exponent = -126; stored exponent = 1

The extreme values of the stored exponent (stored exponent = 0 
and 255) are reserved for special purposes to be described below, 
so the largest possible true exponent is 127 and the smallest is 
-126.

c) The significand (the magnitude of mantissa) is normalized to lie in 
the  range 1.0 <= |m| < 2.0.  This implies that the leftmost bit is a 1. 
It is not actually stored - the 23 bits allocated are used to store the 
bits to the right of the binary point, and a 1 is inserted to  the left of 
the binary point by the hardware when doing arithmetic. (This is 
called hidden-bit normalization, and is why this field is  labelled 
"fraction".) In effect, we get 24 bits of precision by  storing 23 bits.

Example:	
stored fraction =00000000000000000000000
	
 	
 true significand = 1.0

	
 	
 stored fraction = 11111111111111111111111
	
 	
 true significand = 1.11111111111111111111111

d) As noted above, certain exponent values are reserved for special 
purposes, and when they appear the interpretation of the signficand 
changes:

19



(1)Stored exponent = 0

(a) If the significand is zero, then the number represented 
is 0.0 (Since an all-zero stored significand represents 
1.0, a special case is needed to represent zero.)

(b) If the significand is non-zero, then we have a 
denormalized number; no hidden bit is inserted and 
the true exponent is taken as -126  (This allows 
representing very small numbers with the loss of some 
precision)

(2)Stored exponent = 255

(a) If the significand is non-zero, then the representation 
is not a number (NAN).  Any use of NAN in an 
arithmetic operation  always produces NAN as the 
result.

(b) If the significand is zero, then the number represented 
is +/- infinity (depending on the sign bit.)  The 
hardware correctly propagates infinity in arithmetic - 
e.g. infinity +  anything is infinity; infinity - any finite 
value is infinity, but infinity - infinity is not a number 
(NAN).

DEMO (using Dr. Java)

float f = 5.0e38f + 5.0e38f;
f	
 	
 (be sure to omit ;)
f+f
f-f
f*f
f/f
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e) Examples:	


	
 0.0:	
 0 00000000 00000000000000000000000

	
 1.0: 	
 0 01111111 00000000000000000000000 (1.0 * 20)

	
 0.510:	
 0 01111110 00000000000000000000000

	
  (1.0 * 2-1) - note that 0.510 = 0.12

	
 0.75:	
  0 01111110 10000000000000000000000
	
 (1.1 * 2-1) - note that 0.7510 = 0.112

	
 3.0:	
 0 10000000 10000000000000000000000  (1.1 * 21)

	
 -0.375	
 1 01111101 10000000000000000000000
	
 (-1.1*2-2) - note that -0.37510 = -0.0112

	
 1 10000011 01000000000000000000000 = 
	
 - 1.012 * 24 = -10102 = -20.010

3. Range of values for single precision:

- largest finite positive:	
0 11111110 11111111111111111111111 =
1.11111111111111111111111 * 2127 or ~2128 (about 3 * 1038) 

- smallest normalized positive: 0 00000001 00000000000000000000000 = 
1.00000000000000000000000 * 2-126 (about 1 * 10-38)

(The precision of both of the above is 24 bits = ~ 7 decimal places)

- smallest positive:           0 00000000 00000000000000000000001 =
.00000000000000000000001 * 2-126 or 2-149 (about 2 * 10-45)
 (But precision is only one bit!)

4. IEEE 754 also defines a double precision floating point standard,  which 
represents a number using 64 bits: 1 for the sign, 11 for the exponent 
(excess 1023), and 52 for the fraction.
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VIII.Floating point Arithmetic

A. Arithmetic on floating point numbers is, of course, much more complex than 
integer (or fixed-point) arithmetic.  

1. It is not necessary to have hardware provisions for doing floating point 
arithmetic - it is possible to code subroutines to perform basic floating 
point operations using a combination of integer arithmetic and shift 
operations.  

a) Historically, when integrated circuit technology was more limited 
that was often the case.

b) It still is the case for low-end microprocessors used in embedded 
systems.  (In fact, such systems often do not need to do floating 
point arithmetic!)

2. Historically, many CPU's relegated floating point arithmetic to a separate 
processor, often called a "floating point coprocessor". On older systems, 
this was often a separate chip, which may or may not be installed in a 
given computer.  (If not, floating point  arithmetic would be done in 
software.)  Today, the "coprocessor" is actually often part of the main 
CPU chip.  The term coprocessor remains in use for historical reasons, 
and because floating point operations often use their own register set.

3. What we have to say in this section is applicable regardless of how 
floating point operations are physically implemented.  We will briefly 
consider the basic task facing floating point processors, but will not look 
at the algorithms in detail.

B. Recall that a floating point number is actually represented internally by two 
fixed-point numbers: a mantissa and an exponent.  That is, it is of the form:

m * re

We will assume use of the IEEE standard - i.e. 1 <= m < 2, with only the 
fraction part stored; r = 2.
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C. Floating point addition entails the following steps:

1. Reinsertion of the hidden bit.  Though normalized floating point  
numbers are STORED without the 1 to the left of the binary point, the 
arithmetic unit can work on an internal form of the number with the 
hidden bit explicitly present.

(Of course, if an operand is zero or a denormalized number, a 0 is 
inserted in the hidden bit position.)

2. Denormalization: if the exponents of the two operands differ, then the 
operand with the smaller exponent must be shifted right to line up the 
implied binary points.  The larger exponent will then be the exponent of 
the result.

Example:       1.00 * 20  + 1.00 * 2-1   must be converted to:

1.00 * 20  + 0.10 * 20  before adding

3. The addition proper.  Note that, since the mantissa is represented using 
sign-magnitude, this may actually entail performing a subtraction!

4. Renormalization: There are three possibilities for the result of of the 
addition/subtraction step

a) The result could be correct and normalized as it stands 

b) There could be carry out from the leftmost mantissa bit:

Example: 1.10 * 20  + 1.00 * 20  yields 0.10 * 2  plus a carry out

In this case, the mantissa is shifted right (bringing the
carry bit in), and the exponent is increased.

Example: The final result of the above is 1.01 * 21

c) There could be no carry out, and the leftmost bit of the mantissa 
could be zero - i.e. the result could be unnormalized.  (This only 
occurs when adding numbers of unlike signs)
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Example: 1.10 * 20  + -1.01 * 20  yields 0.01 * 20  (with no carry 
out)

In this case, the mantissa must be shifted left one or more places 
(until its leftmost bit is 1) to renormalize it, and the exponent must 
be decreased for each  shift.

Example: The final result of the above is 1.00 * 2-2

Note: To reduce the loss of precision in cases like this, the 
hardware often includes one or two GUARD BITS to the right of 
the mantissa which "catch" bits shifted out during denormalization 
and make them available for renormalization

Note: If the exponent would be reduced below the smallest 
permissible value, the result is left in denormalized form.

5. Preparation for storage.

a) If the number has been shifted right during renormalization, then a 
bit will have been shifted out, and will be caught by the guard bits.  
Moreover, the guard bits may contain bits that were   shifted out 
during initial denormalization which are properly part of the 
infinite-precision result.

b) IEEE 754 defines various ROUNDING MODES that control how 
to handle the guard bits:

(1)Round toward zero: the guard bits are discarded. (Also 
called truncation.)

(2)Round to nearest: round the result to the nearest 
representable value - e.g. if the guard bits are 11, then add 1 
to the least significant bit of the result.  Ties are broken by 
rounding  toward zero.

(3)Round toward plus infinity: if the result is positive, and the 
guard bits are non-zero, add one to the least significant bit of 
the result - else discard the guard bits. 
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(4)  Round toward minus infinity: same, but round if result is 
negative.

c) In any case, the the hidden bit is removed prior to storing the 
result. 

D. Floating point subtraction can be converted to an addition problem by simply 
negating the subtrahend and then proceeding as above.

E. Floating point division and multiplication are - relatively speaking - simpler 
than addition and subtraction.

1. The basic rule for multiplication is

a) Reinsert the hidden bit. 

b) Multiply the mantissas

c) Add the exponents

d) If necessary, normalize the product by shifting right and increase 
the exponent by 1.  

(Note that if the mantissas are normalized to begin with,  they will 
lie in the range:         1 <= m < 2

Therefore, the product of the mantissas will lie in the range:
1 <= m < 4

So at most one right shift is needed.)

e) Store the result less the hidden bit after appropriate rounding.

f) Additional complexity arises when one considers cases like an 
exponent too large/too small, or when one or both of the mantissas 
are denormalized to begin with.  We will not discuss these, though 
a hardware designer must consider them.
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2. The basic rule for division is

a) Reinsert the hidden bit.

b) Divide the mantissas

c) Subtract the exponents

d) If necessary, normalize the quotient by shifting left and decrease 
the exponent by 1.  

(Note that if the mantissas are normalized to begin with,  they will 
lie in the range:         1 <= m < 2

Therefore, the quotient of the mantissas will lie in the range

0.12 < m < 2.02

So at most one left shift is needed.

e) Store the result less the hidden bit after appropriate rounding.

f) As with multiplication, additional complexity arises when one 
considers cases like an exponent too large/too small, or when one 
or both of the mantissas are denormalized to begin wtih.  We will 
not discuss these, though a hardware designer must consider them.

F. As can be seen, a floating point arithmetic unit needs to be able to add and 
subtract exponents, and to shift, add, and subtract mantissas. The latter can be 
done by using the same hardware as for the integer multiply/divide operations, 
or special, dedicated hardware.

IX.Characters

A. In principle, any information that can be represented as integers unsigned or 
signed) can be represented in binary by converting the integer representation into 
binary.
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B. We have previously seen how textual information can be represented by 
assigning integer codes to individual characters - either: 

1. ASCII: each character is assigned an 8 bit code in the range 1 .. 127

(With one bit unused - sometimes the additional codes (128 .. 255) are 
used for various extensions to the character set.)

2. Unicode: each character is assigned a 16 bit code in the range 1..65535.

X. Aggregates

A. Most programming languages support two basic kinds of aggregate data: arrays 
and structures/records.

B. As you know, languages in the C family support declarations of the form type 
variable [size] (C/C++) or type [] variable (Java), and languages in 
the Pascal family support declarations of the form type variable: array 
[range] of type.  (Similar forms with other syntax are found in other 
languages as well.)  

1. Such variables are represented by a series of successive memory 
locations, each holding one element of the array.

2. For example, the C declaration int foo [3]; would be represented in 
memory as.

foo[0]

foo[1]

foo[2]

where each element is represented in the normal way for an integer 
(typically 32 bits)
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C. As you know, languages in the C family support declarations of the form 
struct ... { type1 field1; type2 field2 ... } (C/C++) or 
class ... { type1 field1; type2 field2 ... } (C++/Java).

1. Variables of such type are represented by a series of successive memory 
locatoins, each holding one field.

2. For example, the C declaration struct { int i; double d } would 
be represented in memory as.

i

d

where i is represented in the normal way for an integer (typically 32 bits) 
and d is represented in the normal way for a double (typically 64 bits).

XI.Representing Sounds, Images and Movies

A. Thus far, we have looked at how numeric and textual information can be 
represented in binary.  Although our senses are involved in our acquiring 
information of these kinds (e.g. through reading or listening to text), we work 
with these basically as mental abstractions.  

B. Of course, it is also possible to use binary to represent information perceived by 
our senses more directly.

1. There exist standard binary representations for sounds, images, and 
combinations of the two (e.g. movies).

The standards are “tuned” to the characteristics of the human ear and eye 
- e.g. sound representations are designed around the range of frequencies 
the human ear can hear, and image representations around the range of 
colors the human eye can see.

28



2. There do not, at present, exist standard binary representations for smells, 
tastes, or information perceived by touch.  (Though systems exist that 
work with all of these, each uses its own system of representation.)

C. Sounds

1. Computers can store and reproduce sounds by storing digitized 
SAMPLES of the sound signal intensity.  A sample represents the 
intensity of the audio signal at a particular instant of time, which 
corresponds to the position of the sound cone in a loudspeaker playing 
the sound or the acoustic pressure on the eardrum of a listener at that 
instant.

a) For high quality, these samples must be taken tens of thousands of 
times per second.  There is an important theorem, called the 
sampling theorem, that says that any sound can be accurately 
reproduced given samples taken at twice the highest frequency 
present in it.

-The human ear can hear pitches up to about 20 KHz.  CD 
quality audio is based on 44,000 samples per second.

- To conserve storage, computer systems may use 22,000 or 11,000 
or 8,000 samples per second.  This loses the upper-end of the 
frequency spectrum, but is adequate for many purposes

b) The precision with which the samples are stored is also important.

- High quality systems (e.g. CD’s) typically use 16 bit samples, 
which gives a precision of one part in 32768, (given that the signal 
oscillates above/below 0) or about .003 %.  This level of precision 
is such that the human ear cannot perceive the difference between 
the recorded sound and the original.
- Lower quality systems have used 8 bit samples, which gives a 
precision of one part in 128, or about 0.8%, which is audible to a 
trained ear.  With increasing capacity/decreasing cost of storage, 
the rationale for using smaller samples like this has declined.
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2. The storage requirements for sound can be reduced by various 
compression techniques we won't discuss here.   One key concept is the 
distinction between lossless and lossy compression.

a) If sound data is compressed using a lossless strategy, and then 
decompressed, the result is identical to the original - i.e. nothing is 
lost.  Lossless strategies, of necessity, can only achieve minimal 
compression - perhaps as good as 2:1.

b) If sound data is compressed using a lossy strategy, and then 
decompressed, the result will be slightly different from the 
original.  The goal of the designers of the compression scheme is, 
of course, for the differences to be in an area of the audio spectrum 
that cannot be noticed by the human ear.

Some compression schemes (e.g. mp3) allow the user to select a 
tradeoff between degree of compression and overall quality - e.g. 
more compression can be achieved at the expense of more 
noticeable compression artifacts.

D.  Images

1. As we have seen in earlier courses, pictorial information is displayed  by 
breaking the screen into individual dots, known as PIXELS.  The  quality 
of the image is in part determined by the number of pixels per inch (often 
abbreviated dpi = dots per inch.)  This is called the RESOLUTION of the 
image.

a) Computer monitors typically use a resolution of around 72 dpi.

b) Typical laser printers use 300-600 dpi; some publication-quality 
printers go to 600 or 1200 dpi or more.

2. For black and white graphics, each pixel can be represented by a single 
bit in memory.
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3. For gray scale graphics, each pixel can be represented by a small integer 
(often a single byte) representing a degree of lightness or darkness.  For 
example, using one byte per pixel:

0 = black       255 = white    128 = medium gray

4. For color graphics, each pixel is represented by three small  integers, 
representing the intensity of each of the three primary  colors (red, green, 
and blue) at that point.

a) The most sophisticated systems currently available store 24 bits for 
each pixel - 8 for each color.  This allows for over 16 million 
colors, ranging from black (all 0's - all colors totally off) to white 
(all 1's - all colors totally on.)

Examples

 R	
 	
 G	
 	
 B

11111111	
00000000	
 00000000	
 Pure red
11111111	
11111111	
  00000000	
 Pure yellow
10000000	
 10000000	
 11111111	
 Light blue

DEMO: RGB Applet on course page

b) Where the graphics system represents an image on top of a 
background or another image, an additional byte for each pixel (32 
bits in all) can be used to hold a value called alpha - representing 
the opacity / transparency of the pixel.  A pixel with alpha 255 is 
totally opaque - nothing of the color beneath it shows through; a 
pixel with alpha 0 is totally transparent - i.e. the underlying color is 
all that shows - and when alpha is between 0 and 255 the color that 
is actually displayed is a blend of the color of the pixel and the 
color of its background. 

c) To conserve storage, some systems store only 8 bits per pixel, 
where each possible value selects one of 256 predefined colors. 

31



d) Other systems store 16 bits per pixel, allowing a choice of one of 
65536 predefined colors.

5. Images are often compressed using various strategies we won't discuss in 
detail here.  

a) The key concept in such strategies is to take advantage of the fact 
that an image often contains regions of the same or similar color 
(e.g. a blue sky) which can be stored in a compressed form by 
storing the basic color and information about which pixels contain 
it, rather than storing the full color information for each pixel.

b) As with audio compression, image compression schemes can be 
either lossless or lossy - for example gif and png are lossless, while 
jpeg is lossy.  As was the case with the audio schemes, there is a 
tradeoff between amount of compression and quality of the 
resulting image - though, in the case of images, even lossless 
schemes do manage to achieve significant compression.

E. Movies

1. Current television technology is based on redrawing the screen 30 times 
per second (in the US),  or 25 times per second (in Europe and Asia).  
Celluloid movies (as displayed in a theatre) typically consist of 24 
images per second. 

a) Each such image is called a FRAME.

b) The frame rates used by television or movies are high enough to 
ensure that the human eye does not perceive the individual  frames, 
but gets the perception of overall smooth motion.

2. Thus, movies can be represented by a series of individual frames (using 
image representation) - plus an associated sound track.
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The frame rate (number of frames per second) may be limited by the 
hardware or by storage capabilities; but a frame rate that corresponds to 
that used for TV or films is desirable since it avoids the visual appearance 
of flicker.

3. As you can imagine, the storage requirements for video information can 
be huge.  Instead of using a lower frame rate (which results in perceptible 
flicker or worse), the storage (and transmission time) requirements can be 
significantly reduced by various compression techniques we will not 
discuss in detail here, beyond noting two typical targets for compression.

a) Normally, the difference between successive frames of a video 
(representing a time interval of 1/30 or 1/24 of a second) are quite 
small; thus, one standard compression stategy is to store a subset of 
the frames (called the KEY FRAMES) en toto,  and then to store 
the remaining frames in terms of the DIFFERENCE relative to the 
most recent key frame.

b) Since any given frame is an image, it can be compressed using an 
image compression scheme as well. 
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